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Abstract

ion of the coefficients is studied in

C’)ﬂigital matched filters for weak-signal

detection. An algorithm for optimum co-
fficients and equations for the optimum
input quantizer are obtained for the
known signal in additive noise problem.
Some numerical performance results are

E:Egiven.

I. INTRODUCTION

A matched filter is often used as a
detector for testing a hypothesis about
an input signal; it is the optimal pro-
cessor in this role for Gaussian input
noise, and may also be considered as the
optimum processing scheme in non-Gaussian
noise in the weak-signal case. We will
elaborate on this in the next section;
the general theory and applications of
matched filters may be found, for exam-
ple, in [1,2].

In this paper we will be concerned
with digital matched filters operating
on discrete-time data, and we will exam~
ine the effects of, and optimization with
respect to, finite-bit representation or
quantization of the coefficients and ana-
log inputs. Most previous investigations
in this direction have been concerned ei-
ther with data quantization only (e.g.
[3]) or have assumed only simple one-bit
coefficient representations [2].

In the next section we briefly con-
sider the basic results on local, or
weak-signal, detection of signals based
on quantized data and finite-bit coeffi-
cients. In Section III implementation
of optimum digital matched filtering is
considered, and an algorithm for deter-

mining the best coefficient representa-

D=tion is discussed. In Section IV we

give some numerical examples.
II. PERFORMANCE WITH QUANTIZED
COEFFICIENTS AND INPUTS

Let us assume that an observation
vector X = (X;,Xy,...,X ) is available,

and is described by the equation

X, = 6s; +N;, i=1,2,...,n, 620. (1)

DDC
A2mMor

L
Wi

Here the vector s = (81'52'°"'sn) is a

known signal vector, 6 is the amplitude
of the signal, and the vector
N = (Nl'NZ""'Nn) is a vector of inde-

pendent identically distributed noise
samples each with symmetric density f.

If we consider as a detection sta-
tistic for testing HO:9=0 vS. H1:6>0 a

n
T= I g,(Xx;), (2)
j=p 174

and use as a criterion of optimality the
differential signal-to-noise ratio

2
a
[$557 1020 ]
var{Tlg_,

DSNR = (3)

we find (from the Schwarz inequality)
that the optimum T maximizing DSNR is

T = z S.

where

L}
opt(x ) = -f (Xi)/f(xi) (5)

the prime denoting the first derivative
of the function. The criterion of (3)
is a reasonable one for the weak-signal
case, being a modified case of the usual
SNR criterion (2]. It is also well-

known, of course, that Topt is the

locally-optimum statistic maximizing the
slope of the power function for testing
Hy vs. H; [4].

In the case of Gaussian noise Topt

is the output of a linear filter matched
to the signal vector s. 1In the general

case, we may consider Topt to be the out-

put of a similar filter preceded by the
instantaneous nonlinearity qopt‘ For the

digital matched filter both the coeffi-
cients, the S;» and the data inputs, the
gopt(xi)' have to be replaced by suitably
quantized versions r; and q(xi), respec~
tively.
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To optimize the performance of the
digital matched filter, then, we have
to optimize DSNR of (3) for the case
where the detection statistic is

n
T.= I r. q(X;) (6)
a i i g7

the optimization being with respect to a

choice of the r; and the input quantizer

q, given 2b=2k levels or b bits for co-

efficient representation and 2t=2m lev-
els or t bits for the data quantization.
Note that (6) represents a general dig-
ital matched filter operating on quan-
tized data, for any kind of input noise
density.

Applying (3f to T4, we find that
DSNR for Td with an odd-symmetric,
even-state quantizer q is given by

n 2
;1831]
DSNR; = = : .
z ry
i=1

2 jz 250£ (ag)~£ (ay 1)]]

m
Loy [F(aj_l)-F(aj)]
3= (7
where F is the distribution function
corresponding to £. In (7) the zj are

the output levels for positive x of the
symmetric quantizer q, with g(x) being
£j whenever x is in the interval

(aj. aj-l)‘
aj < aj-l' and by definition am=0 and

The breakpoints aj satisfy

ao-ﬂ'
The problem is to maximize the
quantity

r
o bim Tl 1.1 11]
2

P

(8)

which is a factor in DSNRd. In addition,
for the

quantizer q, the best set of breakpoints
‘j may be obtained. Then the overall

performance of the digital matched filter
may be optimized with respect to alloca-

for a given set of levels %

tion of b+t bits between coefficient and
data quantization. -

III. PERFORMANCE OPTIMIZATION

As discussed in the previous section,
the objective is to maximize DSNRd of (7).

The two factors in (7) are decoupled, so
that the coefficient representation and
data quantization problems can be treated
independently of each other. We first
consider maximization of the coefficient
factor J defined in (8). This quantity
can be written as

(_r.;-g)2
J = —— (9)
THIE

where s is the previously defined signal
vector and r = (r;,r,,...,r ), the vector

of filter coefficients by which the ref-
erence signal s is represented. If we
let ¢ be the angle between s and r, so
that

. (z-s)?
cos“¢p = —m—MmM—— 8 —— , (10)
2 2
[zl 1€l ]s]]
we can express J as
3 = |lsll%cos? . (11)

Thus, maximization of J for a given ref-
erence signal is simply maximization of

cosz¢, and we therefore have to pick the
vector r closest to s.

Since it was not easy to aet an
analytic solution for the coefficient

vector r maximizing cosz¢ for a given s
(and with a constraint on the number of
bits, b, for coefficient representation),
an efficient computer technique was de-
veloped which is described below.

It was assumed that the coefficient
representation r is obtained through a
quantizer with one of three possible

ranges of 2b=2k levels:

(a) The levels
(b) The levels
(c) The levels

0,1,...,2k-1
-k+1l, -k+2,...,k
-k, =k+l,...,k-1

Range (a) is obviously to be used if s
has positive components. A signal vector
with all negative components may be com-
plemented, and therefore be represented
in this range also. Ranges (b) and (c)
are more natural choices if positive as




well as negative components are present
in s. Note that we are considering the
class of quantizers with an even number
of levels, one of which is the 0 level.

The search algorithm for r is des-

cribed by the following sequence of

steps. It is assumed that the signal

vector components have been ordered,

that is s,<s.<...<s_, and are non-zero.
1-"2=""°"="n

0. Initialization: j = 2k-1, C=0.

2. Check if sn>0. If not, invert the

sequence of components in s so that
now $ = (-s ,-S, _ys---,~S;), and go

to step 3.

n
2. Check if I s.>0. If the sum is
ing *
negative, invert the sequence of
components in s, so that now

8= (—sn,-sn_l,...,-sl). Note that

inverting the sequence in step 1
results in a sequence which fulfills
the condition in this step.

3. Form the vector s(j)-= (s,(3),
sz(j),...,sn(j)) where,si(j)=jsi/sn.
Let Ii(j) be the largest integer
less than, or equal to, si(j). Thus
In(j) = j; the algorithm now looks

for the first (n-1l) components of
£(3) = (ry(3),ry(3)senerry 4 (3),3)
so that the cosine squared of the
angle between s and r(j) is maxi-
mized.

4. If j=k, go to step 6. If j<k, go
to step 7.

5. If si(j)>0, consider the two possi-
bilities Ii(j) and Uy (j) for ri(j).
where Ui(j) is the smallest integer
larger than, or equal to, si(j).

If s;(j)<0, set r;(j)=0. Go to
step 8. y

6. 1f si(j) > -k+1, consider the pos-
sibilities Ii(j) and U; (j) for
ri(j). If si(j) < k+1, set
ri(j) = -k+l. Go to step 8.

7. If s;(j) > -k, consider the possi-
bilities Ii(j) and Uy (j) for r; (3).
If s, (J) < -k, set r;(j) = -k.

8. Coupute the square of the cosine,

c (j). of the angle between s and
r(j) for each different possible
combination of components of r(j):
let r_ (j) be the vector yleldlng

a naximum value cg (J) for ¢ (j).
If c2 > C, assign the value Cn (J)
to C and define r to be gm(j).

9. If j>1, set j=j~1 and go to step 3.

10. Stop. The optimum coefficient vec-
tor is r, and C is the square of
the cosine of the angle between r
and s, if the two conditions of
steps 1 and 2 had been fulfilled.
Otherwise the optimum coefficient
vector is in inverse order in r.

On an intuitive basis, one might
choose the best coefficient vector in
the following way for the simple case

where the s; are positive. Pick the

vector of coefficients I, where the com-
ponents r1 are the integers closest to

the s, (2k-1).
I need not be an optimum set maximizing

However, it is clear that

cosz¢. This can be seen by considering
the case b=1, giving two-level represen-
tation, for (n-1) identical, small s;

and a large value for She In the next

section this is further illustrated for
an example which is not as extreme.

We also need to consider optimiza-
tion with respect to the data quantizer.
For the symmetric even-state input quan-
tizer we are considering, specification

of the number of levels 2t=2m (with t
bits) fixes the levels at values
+1,42, .. ,4m. With Lg=m-3+1,3=1,2,...,m,

the second factor K in (9), defined by

m 2

K = » ’ (12)
2

jEI zj [F(aj_l) F(aj)]

can be maximized with respect to the aj.
The optimum set {a, }ng

obtained for spec1f1c densities f. Set-
ting the partial derivative of K with
respect to aj equal to zero, we find a

can easily be

necessary condition for the maximizing
values of aj:




==

-f.(a ) L.+ 2
j i~ J j+1 =1
fTa;) [ 2 ’m

2. 2[F(a, -F (a;)

j'l j B 1)

j=1,...,m-1
(13)
Equation (13) may be solved for specific
densities. For the case of a Gaussian

density with variance 02, the equations
reduce to

L. + L.
aj = 0.2 [_j_rlil] L, j=1,...,m

(14)
where
j[f(a )~ f(a 1)1

j=1
m . (15)

2[F(a

j=1 j -F (aj) ]

-1

Substitution of (14) in (15) leads to a
single equation for L, which may then be
solved (numerically) and hence the opti-
mum aj can be obtained. The next sec-

‘tion contains some specific numerical

results.

IV. RESULTS AND DISCUSSION

The considerations of the previous
section were applied to several specific
cases, two of which are presented here.
A signal vector s of 10 components and
one of 15 components is shown in Table I,
together with optimum representations
for one, two and three bits. The maxi-
mum values J - of J [Equation (11)]

normalized by Ilsll are also shown in
Table I. The results indicate that even
with only two bits for coefficient rep-

resentation (cosz¢)max is very close to

unity, which corresponds to the analog
case. The exact numerical values depend
on the coefficient vector and its length.

In the second part of Section III
the optimization of the second factor K
in (7) was discussed. The optimum per-
formance for the specific case of
Gaussian noise with unit variance is
shown in Table II. Again, in this case
the value K=1 is obtained for unquan-
tized data. Table III combines the re-

sults of Tables I and II, giving the
overall performance for the different
allocations of a fixed number of bits
(six bits) between coefficient represen-

tation and data quantization. 1In general,
the optimum allocation will depend on the
length of the vector s, its components
and the type of noise density. It is
seen that one need consider only a small
number of bits to achieve near-analog
performance.

In Section III an approximation
method of quantizing the coefficient
sequence s was also discussed. Table IV
gives an example of this approxlmatlon
method using the same sequence as in
Table 1(a) with n=10. Note that the dis-
crepancy is larger for the lower-order
quantizers, as expected. In fact, the
result of the approximation for 3 bits
is identical to that in Table 1. It is
seen that in this example, the approxi-
mation methods gives performance very
close to optimum.
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Table I: Optimum Coefficient Representation
(a) n=10
-1.82  -0.92 -0.08 0.77 1.22 |Mmax __ (. .2,
COEFFICIENTS sl12 max
1.58 1.98 2.30 2.41 3.10 =
ONE BIT 0 0 ° 9 1 G
n REPRESENTATION 2 1 1 1 N
TWO BIT -1 =3 0 1 1 0.957
REPRESENTATION 1 2 2 2 2
THREE BIT =2 -1 o x 2 g
REPRESENTATION 2 - 3 3 4
(b) n=15
k ~4.3 2.1 =18  *1.7 =12 |Ymax 2
T2 (cos™¢) pax
COEFFICIENTS -0.7 0.1 0.3 1.1 1.6 | ||s]|
2.1 3.1 3.3 4.1 4.5
ONE BIT ‘ 0 ¢ . v
REPRESENTATION ()} (] (] 0 0 0.604
| 1 1 1 1 1
5 TWO BIT -1 -1 -1 A -1
§ REPRESENTATION 0 ()} (] 1 1 0.907
3 1 2 2 2 2
2
-3 -1 -1 -1 -1
THREE BIT .
_ REPRESENTATION 0 0 0 1: 1 0.979
: 1 2 2 3 3 ;
1 .
¢ Table II: Optimum Data Quantization (Gaussian Noise, Unit
Variance)
QUANTIZER BITS 1 2 3 4

OPTIMUM VALUE OF K 0.637 0.842 0.946 0.984

|
P
|




Table III:

Bit Allocation Between Coefficient and Data
Quantization (Gaussian Noise, Unit Variance)

(a) n=10
Coefficient
Bits 1 3 s
Data Bits ) 3 1
_2§E§5 <0.792. 0.941 0.936 <0.842 <0.637
sl
(b) n=15
Coefficient
Bits 3 4 .
Data Bits 5 3 1
-DSHE <0.604 0.892 0.926  <0.842  <0.637
sl
Table 1IV: Suboptimum Coefficient Representation
«1.82 =0.92 =0.08 0.77 1.22 | "max _ 2
COEFFICIENTS THIE = (cos™8) pay
1.58 1.98 2.3 2,81 AN 2
ONE BIT 0 0 0 0 0 0.775
REPRESENTATION N 1 1 1 1
TWO BIT -1 =1 0 0 1 0.930
REPRESENTATION 1 1 1 2 2
THREE BIT -2 -1 0 1 2 0.990
REPRESENTATION 2 3 3 3 4
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